ELECTROMAGNETICAL ENVIRONMENT AND SAFETY FOR LARGE SENSITIVE SYSTEMS A NEW APPROACH AND FIRST SOLUTIONS

Daniel SOLEIL (EMCS), Alain ALCARAS (THALES)

Saint-Petersbourg - RUSSIE 26-29 Juin 2007

VII INTERNATIONAL SYMPOSIUM AND EXHIBITION ON ELECTROMAGNETIC COMPATIBILITY AND ELECTROMAGNETIC ECOLOGY - EMC 2007

Disturbances protection for sensitive facilities

Threats :

- Conducting currents
- Electromagnetic fields
- Constraints :
 - Safety of people
 - Protection of power installations
 - Protection of sensitive equipments (or functions)

Topology :

- Large installations
- Electronic power systems
- Electronic sensitive systems

Lightning protection for sensitive facilities

- Threats :
- Direct effects from main lightning current
- Indirect effects (EM radiation, secondary lightning currents
- Constraints :
- Safety of people
- Protection of power installations
- Protection of sensitive equipments (or functions)
- Topology :
- Direct effects : Ligthning Protection System (LPS)
- Indirect effects : EMC System
- Interface D/I effects : Surge Protection Device (SPD)

Current method for sensitive structure

Standard, Regulation, Guide

 \Rightarrow equipotential network (low Z)

ENIC PRODUCT ET ENIC STSTENI (2/3)

Military, aeronautical and spatial domains

EMC System (Indirect effects)

- State of the art :
 - Research based on test, metrology and complex calculation
 - Standards at the project stage

- "Zero Method" (MZ) seen by DGA, Thales, Onera :
- Complement of current method
- Matched for sensitive facilities

MZ APPROACH : S/N RATIO

occasional (O) or permanent (P)

Electrostatic discharges (O) Atmospheric discharges (O)

Industrial parasitics (P) Radio frequencies (P)

THE ZERO METHOD : v = 0 and i = 0

6 CONVENTIONAL REFERENCE POTENTIALS

Casing, Ground, Zero for electronic parts, Zero for communications DC Energy, AC Energy.

> No parasit <u>current</u> circulate in reference potential conductors
> No parasit <u>voltage</u> exist between different reference potentials

- Lightning and industrial domains : 10 kHz 10 MHz
- Applicable on higher frequencies (IEMN, HIRF, ...)

v = 0: Feedback experience on significant sites

"Zero" : What does it mean in practice ?

I = 0: EXPERIMENTAL CURRENT DATAS

"PERTURBOMETER" (®)

HF voltmeter and Ammeter probes

10 KHz - 10 MHz range

Peak measurement < 10 Vp and < 10 Ap

Audio, scope and recorder ports

Internal battery

A MAIN RESULT: THE DYNAMIC EQUIPOTENTIALITY

Some solutions for large sites by Zero Method

=> ISOLATION BETWEEN L.P.S AND THE SENSITIVE GROUND NETWORK

=> FILTERING OF SOURCE POWER AND POWER DISTRUBITION HARDENING

Power distribution filtering and hardening : Theory (1/4

Analysed configuration

Power distribution filtering and hardening : Theory (2/4

- 2 Typical situations are met :
- Filtering of the power source in <u>differential mode</u>
 - Correction of the "cos \u00e9"
 - Attenuation effectiveness in differential mode
- Attenuation in <u>common mode</u> with TNS Neutral mode distribution
 - Attenuation effectiveness in comon mode
- 2 Theorical studies :
- Analytical relation related to the "cos \u00e9" correction
- Analyical relation of differential and common attenuations

Power distribution filtering and hardening : Theory (3/4)

$$Pap(Origin) = \sqrt{Pac^{2} + Pr_{L}^{2}} \text{ and } Pap(End) = \sqrt{Pac^{2} + X^{2}}$$

with $X = X_{L} - X_{C}$ and $Xc(\%) = 100 \frac{X(c)}{Pap(Origin)}$

Main results

Insertion up to 20% of reactive power does not raise difficulties

Practically, 5% per zone are necessary (majority of the case)

Approching formulation : C (μ F) = P (kVA)

Power distribution filtering and hardening : Theory (4/4)

Analytical relation for Attenuations (D & C)

$$\frac{Ve}{Vs} = \frac{1}{1+z_1y_2}, \text{ with :}$$

$$z = R + jX \text{ et } X = Lw - \frac{1}{Cw} \text{ and } y = \frac{1}{R+jX} \text{ or } y = \frac{R-jX}{R^2 + X^2}$$

$$\frac{Ve}{Vs} = 1 + (R_1 + jX_1) + \left(\frac{R_2 - jX_2}{R_2^2 + X_2^2} + (indice3) + (indice4) + (indice5)\right)$$

Considering
$$\frac{R_2 - jX_2}{R_2^2 + X_2^2} = \frac{R_2 - jX_2}{Q_2}$$
, idem for indice 3 ... 5.

$$\frac{Ve}{Vs} = 1 + \frac{R_1R_2}{Q_2} + \frac{R_1R_3}{Q_3} + \frac{R_1R_4}{Q_4} + \frac{R_1R_5}{Q_5} + \frac{jX_1R_2}{Q_2} + \frac{jX_1R_3}{Q_3} + \frac{jX_1R_4}{Q_4} + \frac{jX_1R_5}{Q_5} - \frac{jR_1X_2}{Q_2} - \frac{jR_1X_3}{Q_3} - \frac{jR_1X_4}{Q_4} - \frac{jR_1X_5}{Q_5} + \frac{X_1X_2}{Q_2} + \frac{X_1X_3}{Q_3} + \frac{R_1X_4}{Q_4} + \frac{R_15_5}{Q_5}$$

We get now

$$\frac{Ve}{Vs} = 1 + \left(\frac{R_1R_2 + X_1X_2}{Q_2}\right) + (--_3) + (--_4)(--_5) + j\left(\frac{X_1R_2 - R_1X_2}{Q_2}\right) + (--_3) + (--_4) + (--_5)$$
and finally $Att = \frac{1}{\sqrt{r^2 + i^2}}$
THALES - Daniel SOLEIL

Application : Filtering of the Main DB (1/2)

Туре	Filter « 1 »	Filter « 2 »	Filter « 5 » Differential source
L (µH)	80	-	400
$R(\Omega)$	0,019	-	0,170
C (µF)	-	250	-

- Fil "1" : Transformer characteristics (250 kVA)
- Fil "3" : User impedance in differential mode

Application : Filtering of the Main DB (2/2)

Application : Distribution hardening (1/3)

Туре	Filter « 1 »	Filter « 2 »	Filter « 3 »	Filter « 4 »	Filter « 5 » Distrib common mode
L (µH)	50	40	-	-	250
$R(\Omega)$	0,015	4,7	47	-	1000
C (nF)	-	220	1000	470	50

- Fil "1" : Distribution board characteristics (80 kVA)
- Fil "2", "3", "4" : Wave Absorbing Filter (FAO)
- Fil "3" : User impedance in common mode

Application : Distribution hardening (2/3)

ABSORBER WAVE FILTER (AWF)

NEW « EMCS » COMPONENTS (3/3)

Power distribution filtering and hardening : Perfomance

ter attenuations

- TNS neutral mode => No parasite voltage on CM (MDB)
- Significant rate of attenuation for F > 30 kHz
- For F > 200 kHz : att > 40 dB => **Good against Lightning**
- & C mode)
- equent Experimental Results
- tial parasit voltage reduced from 10 Vp to 0.1 Vp

DERIVATED ATMOSPHERIC DISCHARGES (1/4)

SPLITTING UP COIL (2/4)

olation between L.P.S and the sensitive ground network (3/4

PSPICE Modelling

Isolation earthling / sensitive ground network (4/4)

Electric safety	At 50 Hz, 50 A:		
Conformity with the human safety	$Z = 50 m\Omega$		
requirements.	Drop voltage : 2,5 V eff.		
Direct Lightning Protection	1) In low frequency : $Z < 1 \Omega$.		
1) Equipotentiality at low frequency	2) Light attenuation of the impulse amplitude		
	(15%).		
2) Attenuation of the impulse and the high	For di/dt, reduction of approximately 20%		
frequencies.	For di^2/dt^2 , reduction of approximately 30 dB .		
2) Desistance to the Lightning even elters	3) TER develops an overvoltage approximately 6		
3) Resistance to the Lightning overvoltage.	times less than a traditional coil linear.		
EMC Protection	For the high frequencies (F > 10 kHz) TER bring an attenuation from approximately 20 dB		
Attenuation from EMC parasites collected by			
the lightning protetcion system.	attenuation from approximatery 20 dB.		

Quasi-perfect equipotentiality

Implies the absence of HF current in a conductor.

Experimental regulation of electromagnetic disturbances

Cos Ø correction capacitor in star configuration for a quasi-null HF impedance. Isolation between the lightning current and the sensistive ground networks <u>*Responsibilities*</u>

It is possible that this concept becomes a tool to better define responsibilities.

Point of view of the customer and the user

Positive financial assessment of exploitation thank to the effectivness protectic carried out.

Concept easy to understand.

"System " approaches of Electromagnetic Compatibility by the Zero Method

This method is worth to be explored (capacity to lead to a methodology of coherent and universal analysis in the field of the EMC system). THALES - Daniel SOLEIL

TRANSFERT CM => DM 2/3

Référence

OTHER APPROACH FOR "0 FAILURE" 3/3

REFERENCES -1

SUBWAY MATRA VAL OF LILLE

70 vehicles, some are

anormally disturbed

REFERENCES -2

EPILEPTOLOGY UNITS SEEG AND MEG

REFERENCES -3

REFERENCE 4- Protected rooms

REFERENCES 5-

EDF NUCLEAR POWER PLANT IN CRUAS

3 x 1,5 Km 4 x 900 MW

REFERENCE 6-

COSTS : Pay out < 2 years for SPSE Pipelines

THANKS YOU FOR YOUR ATTENTION !